
Matrices and Linear Trans. Assignment #10 Due Aug 2

Show your work and justify all answers.

(11 pts)

(1) [+1] Suppose that A is a non-singular matrix with A,A−1 ∈ Zn×n; that is both A and A−1 have only

integer entries. What are the possible values for detA?

Solution: Since detA =
∑
σ∈Sn

sgnσ
∏n
i=1Ai,σ(i) and Ai,j is an integer for all i, j, we observe that detA

must be an integer. The same reasoning tells us that det(A−1) must be an integer. Since det(A−1) =
1

detA , this means that both detA and 1
detA are integers, meaning that detA = ±1. �

(2) [+1] Show that if n is odd, then A−AT is singular for all A ∈ Cn×n.

Solution: We compute

det(A−AT ) = det
(
(A−AT )T

)
= det(AT −A) = det

(
−(A−AT )

)
= (−1)n det(A−AT ) = −det(A−AT ),

since n is odd. Hence, det(A−AT ) = 0, so A−AT is singular. �

(3) [+1] Find the eigenvalues and eigenspaces of

[
5 −3

6 −4

]
.

Solution: We first compute

PA(t) = det

[
t− 5 3

−6 t+ 4

]
= (t− 5)(t+ 4) + 18 = t2 − t− 2 = (t− 2)(t+ 1).

Therefore, the eigenvalues of A are 2 and −1, each with multiplicity one. From this, we compute

E2(A) = Nul

[
−3 3

−6 6

]
= span

{[
1

1

]}

E−1(A) = Nul

[
−6 3

−6 3

]
= span

{[
1

2

]}
.

�

(4) [+2] Suppose that A ∈ Cn×n satisfies A2 = A. Prove that A is diagonalizable.

(Hint: you may find some inspiration in a previous homework)

Solution: We use the results of problem (2) in HW5 (notice that we never used the fact that A is

real in the solution there, so the fact that A may be complex here is unimportant). We have E1(A) =

{~x ∈ Cn : A~x = ~x} = ColA and E0(A) = {~x ∈ Cn : A~x = ~0} = NulA. Then we know that

E1(A) + E0(A) = ColA+ NulA = Cn, so A has a basis of eigenvectors, so A is diagonalizable. �

(5) Suppose that A ∈ Cn×n has characteristic polynomial PA(t) = (t−λ1)m1 · · · (t−λk)mk where λ1, . . . , λk ∈
C are distinct; that is, A has eigenvalues λ1, . . . , λk where λi has multiplicity mi. Define QA(t) =

(t− λ1) · · · (t− λk).

(a) [+1] Show that if A is diagonalizable, then QA(A) = On.

Solution: Since A is diagonalizable, we know that there is a basis {~v1, . . . , ~vn} for Cn such that each

~vi is an eigenvector for A. Fix i ∈ [n] and find j ∈ [k] for which A~vi = λj~vi, so that (A−λjIn)~vi = ~0.
1



2

Therefore, since powers of A commute,

QA(A)~vi = (A− λ1In) · · · (A− λkIn) =

(∏
` 6=j

(A− λ`In)

)
(A− λjIn)~vi =

(∏
` 6=j

(A− λ`In)

)
~0 = ~0.

We conclude that QA(A) = On by the linear extension lemma. �

(b) [+1] Find an example of some A ∈ Cn×n for which QA(A) 6= On.

Solution: Consider A =

[
0 1

0 0

]
, so PA(t) = det

[
t −1

0 t

]
= t2 and QA(t) = t, so QA(A) 6= On. �

(6) [+2] Show that A ∈ Cn×n is Hermitian if and only if there is an orthonormal basis {~v1, . . . , ~vn} for Cn

and scalars λ1, . . . , λn ∈ R such that A =
∑n
i=1 λi~vi~v

∗
i .

Solution: If A =
∑n
i=1 λi~v~v

∗, then A∗ =
∑n
i=1 λ

∗
i (~vi~v

∗
i )∗ =

∑n
i=1 λi~vi~v

∗
i = A since λi ∈ R.

On the other hand, if A is Hermitian, then the spectral theorem tells us that there is an orthonormal

basis {~v1, . . . , ~vn} for Cn such that each ~vi is an eigenvector with A~vi = λi~vi where λi ∈ R. We claim

that A =
∑n
i=1 λi~vi~v

∗
i .

Indeed, since {~v1, . . . , ~vn} is an orthonormal basis, we have
(∑n

i=1 λi~vi~v
∗
i

)
~vk = λk~vk~v

∗
k~vk = λk~vk =

A~vk. Thus, these matrices are equal through the linear extension lemma. �

(7) For a matrix A ∈ Cn×n, the trace of A is defined as trA =
∑n
i=1Aii; that is, the sum of the diagonal

entries.

(a) [+1] Let A ∈ Cm×n and B ∈ Cn×m. Show that tr(AB) = tr(BA).

Solution: We simply compute

tr(AB) =

m∑
i=1

(AB)ii =

m∑
i=1

n∑
j=1

AijBji =

n∑
j=1

m∑
i=1

BjiAij =

n∑
j=1

(BA)jj = tr(BA).

�

(b) [+1] Let A ∈ Cn×n be a matrix with eigenvalues λ1, . . . , λn (not necessarily distinct). Show that

trA = λ1 + · · ·+ λn.

Solution: We can write A = UTU∗ where U is unitary and T is upper-triangular. We know that

the eigenvalues of T are also λ1, . . . , λn since A and T are similar. Additionally, since T is upper-

triangular, its eigenvalues are precisely its diagonal entries; thus trT = λ1 + · · ·+λn. Now, by part

(a), trA = tr(UTU∗) = tr(TUU∗) = tr(TIn) = trT = λ1 + · · ·+ λn. �

(8) Bonus[+1] Let {~v1, . . . , ~vn} be any orthonormal basis for Cn. Show that trA =
∑n
k=1〈~vi, A~vi〉 where

〈·, ·〉 is the standard Hermitian inner product.

Solution: We first show that if {~v1, . . . , ~vn} is an orthonormal basis for Cn, then
∑n
i=1 ~vi~v

∗
i = In.

Indeed,
(∑n

i=1 ~vi~v
∗
i

)
~vk = ~vk~v

∗
k~vk = ~vk since this is an orthonormal basis. Thus,

∑n
i=1 ~vi~v

∗
i = In by the

linear extension lemma.

Now, 〈~vi, A~vi〉 = tr〈~vi, A~vi〉 since this is simply a scalar, so we can compute using part (a) and the

observation that tr(aA+ bB) = a trA+ b trB for scalars a, b ∈ C and A,B ∈ Cn×n,

n∑
k=1

〈~vi, A~vi〉 =

n∑
k=1

tr(~v∗iA~vi) =

n∑
k=1

tr(A~vi~v
∗
i ) = tr

(
A

n∑
i=1

~vi~v
∗
i

)
= tr(AIn) = trA.

�


