

Show your work and justify all answers.

(11 pts)

- (1) **[+2]** Show that $A \in \mathbb{C}^{n \times n}$ is diagonalizable and has real eigenvalues if and only if $A = BC$ where $B \succ 0$ and C is Hermitian.
- (2) **[+1]** Show that if $A \in \mathbb{C}^{n \times n}$ is diagonalizable, then $\text{Nul}(A^2) = \text{Nul } A$.
- (3) **[+1]** Fix $A \in \mathbb{C}^{n \times n}$. Show that if $E_\lambda^k(A) = E_\lambda^{k+1}(A)$, for some $k \geq 1$, then $E_\lambda^t(A) = E_\lambda^k(A)$ for all $t \geq k$.
- (4) **[+2]** Let $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$. Find matrices P, J such that J is a Jordan form and $A = PJP^{-1}$.
- (5) Fix $A, B \in \mathbb{C}^{n \times n}$. We say that A and B are *simultaneously diagonalizable* if there is a basis $\{\vec{v}_1, \dots, \vec{v}_n\}$ for \mathbb{C}^n such that each \vec{v}_i is an eigenvector for both A and B .
 - (a) **[+1]** Show that if A and B are simultaneously diagonalizable, then $AB = BA$.
 - (b) **[+1]** Suppose that A has (distinct) eigenvalues $\lambda_1, \dots, \lambda_k$ and B has (distinct) eigenvalues μ_1, \dots, μ_ℓ (but these eigenvalues may have higher multiplicity). Show that if

$$\sum_{i=1}^k \sum_{j=1}^{\ell} (E_{\lambda_i}(A) \cap E_{\mu_j}(B)) = \mathbb{C}^n.$$

then A, B are simultaneously diagonalizable.

- (c) **[+1]** Show that if $AB = BA$, then $E_\lambda(A)$ is a B -invariant subspace.
- (d) **[+2]** Show that if A and B are both diagonalizable and $AB = BA$, then A and B are simultaneously diagonalizable.