

Show your work and justify all answers.

(11 pts)

(1) [+2] Find $\begin{bmatrix} 0 & 3 & -1 \\ 1 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix}^{-1}$ by using Gaussian elimination.

Solution:

$$\begin{array}{c} \left[\begin{array}{ccc|ccc} 0 & 3 & -1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & -1 & 0 & 0 & 0 & 1 \end{array} \right] \xrightarrow{r_1 \rightarrow r_3 \xrightarrow{\sim} r_2 \rightarrow r_1} \left[\begin{array}{ccc|ccc} 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & -1 & 0 & 0 & 0 & 1 \\ 0 & 3 & -1 & 1 & 0 & 0 \end{array} \right] \xrightarrow{r_2 - r_1, \xrightarrow{\sim} (-1) \cdot r_2} \left[\begin{array}{ccc|ccc} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 & -1 \\ 0 & 3 & -1 & 1 & 0 & 0 \end{array} \right] \\ \xrightarrow{r_3 - 3r_2, \xrightarrow{\sim} (-\frac{1}{4}) \cdot r_3} \left[\begin{array}{ccc|ccc} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 & -1 \\ 0 & 0 & 1 & -\frac{1}{4} & \frac{3}{4} & -\frac{3}{4} \end{array} \right] \xrightarrow{r_1 - r_3, r_2 - r_3} \left[\begin{array}{ccc|ccc} 1 & 0 & 0 & \frac{1}{4} & \frac{1}{4} & \frac{3}{4} \\ 0 & 1 & 0 & \frac{1}{4} & \frac{1}{4} & -\frac{1}{4} \\ 0 & 0 & 1 & -\frac{1}{4} & \frac{3}{4} & -\frac{3}{4} \end{array} \right] \end{array}$$

Therefore, $A^{-1} = \frac{1}{4} \begin{bmatrix} 1 & 1 & 3 \\ 1 & 1 & -1 \\ -1 & 3 & -3 \end{bmatrix}$. □

(2) Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and $B = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$ where $a, b, c, d \in \mathbb{R}$ are arbitrary.

(a) [+1] Show that $AB = (ad - bc)I_2$.

Solution: $AB = \begin{bmatrix} ad - bc & -ab + ab \\ cd - cd & ad - bc \end{bmatrix} = (ad - bc)I_2$. □

(b) [+2] Show that A is non-singular if and only if $ad - bc \neq 0$.

(You may use the result of any other problem on this assignment, even if you haven't proved it)

Solution: If $ad - bc \neq 0$, then part (a) shows us that $A^{-1} = \frac{1}{ad - bc}B$, so A is non-singular.

On the other hand, if $ad - bc = 0$, then $AB = O_2$. If it were to be the case that A was non-singular, then by problem (4), we know that it must be the case that $B = O_2$. However, if $B = O_2$, then $a = b = c = d = 0$, so $A = O_2$ as well; an impossibility. Hence, A cannot be non-singular. □

(3) [+1] Suppose that $A, B \in \mathbb{R}^{n \times n}$ are both non-singular. Must $A + B$ also be non-singular?

Solution: No. Let A be any non-singular matrix and set $B = -A$. Certainly B is also non-singular, but $A + B = A - A = O_n$, which is singular. □

(4) [+2] Let $A, B \in \mathbb{R}^{n \times n}$ where A is non-singular. Prove that $AB = O_n$ if and only if $B = O_n$. Here O_n is the $n \times n$ zero matrix.

Solution: Certainly if $B = O_n$, then $AB = O_n$ since O_n is the zero-matrix.

For the other direction, here are two ways to do it:

- Since A is non-singular, A^{-1} exists, so multiply both sides of $AB = O_n$ by A^{-1} on the left, so $A^{-1}AB = A^{-1}O_n \implies B = O_n$ since $A^{-1}A = I_n$ and $A^{-1}O_n = O_n$.

- Start by writing $B = [\vec{b}_1 \ \vec{b}_2 \ \cdots \ \vec{b}_n]$, so

$$O_n = AB = [A\vec{b}_1 \ A\vec{b}_2 \ \cdots \ A\vec{b}_n].$$

Therefore, $A\vec{b}_i = \vec{0}$ for all i . Since A is non-singular, we know that the only solution to $A\vec{x} = \vec{0}$ is the trivial solution, so $\vec{b}_i = \vec{0}$ for all i . In other words, $B = O_n$.

□

(5) [+3] For a matrix $A \in \mathbb{R}^{m \times n}$, the i th row-sum of A is $\sum_{j=1}^n A_{ij}$ (i.e. the sum of the entries in the i th row).

Let $A \in \mathbb{R}^{n \times n}$ be non-singular, and suppose that every row-sum of A is equal to k . What are the row-sums of A^{-1} ?

Solution: The row-sums of A^{-1} are all $1/k$.

To see this, let $\vec{1}$ denote the all-one vector, then the vector of row-sums of a matrix B is precisely $B\vec{1}$.

By assumption, we know that $A\vec{1} = k\vec{1}$ since all row-sums of A are k . Notice that this means that $k \neq 0$, otherwise $A\vec{x} = \vec{0}$ will have a non-trivial solution. Multiplying on the left by A^{-1} yields $\vec{1} = kA^{-1}\vec{1}$, so $A^{-1}\vec{1} = \frac{1}{k}\vec{1}$, so the row-sums of A^{-1} are all $1/k$.

□