

Show your work and justify all answers.

(9 pts)

- (1) Fix $A, B \in \mathbb{R}^{m \times n}$.
 - (a) **[+1]** Show that $\text{rank}(A + B) \leq \text{rank } A + \text{rank } B$.
 - (b) **[+1]** Find an example of two non-zero matrices where $\text{rank}(A + B) = \text{rank } A + \text{rank } B$.
- (2) Suppose that $A \in \mathbb{R}^{n \times n}$ has the property that $A^2 = A$.
 - (a) **[+1]** Show that $\text{Col } A = \{\vec{x} \in \mathbb{R}^n : A\vec{x} = \vec{x}\}$.
 - (b) **[+1]** Show that $\text{Nul } A = \{\vec{x} \in \mathbb{R}^n : \vec{x} = \vec{u} - A\vec{u} \text{ for some } \vec{u} \in \mathbb{R}^n\}$.
 - (c) **[+1]** Show that $\text{Col } A \cap \text{Nul } A = \{\vec{0}\}$.
 - (d) **[+2]** Show that $\text{Col } A + \text{Nul } A = \mathbb{R}^n$.
- (3) **[+2]** Is there a matrix A for which $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \in \text{Nul } A$ and $\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \in \text{Col } A$? Why or why not?
- (4) **Bonus [+1]** Let $A, B \in \mathbb{R}^{m \times n}$. Show that if there is some non-zero $\vec{v} \in \mathbb{R}^m$ for which both $A\vec{x} = \vec{v}$ and $B\vec{x} = \vec{v}$ have a solution, then $\text{rank}(A + B) < \text{rank } A + \text{rank } B$.
- (5) Study for the midterm!