

Show your work and justify all answers.

(9 pts)

(1) Fix $A, B \in \mathbb{R}^{m \times n}$.

(a) [+] Show that $\text{rank}(A + B) \leq \text{rank } A + \text{rank } B$.

Solution: Let $\vec{b} \in \text{Col}(A + B)$ so we can find $\vec{y} \in \mathbb{R}^n$ such that $(A + B)\vec{y} = \vec{b}$.

Now, $A\vec{y} \in \text{Col } A$ and $B\vec{y} \in \text{Col } B$, so \vec{b} can be written as the sum of a vector in $\text{Col } A$ and a vector in $\text{Col } B$, so $\vec{b} \in \text{Col } A + \text{Col } B$.

Thus, $\text{Col}(A + B) \subseteq \text{Col } A + \text{Col } B$, so the full claim follows from the fact that $\dim(S_1 + S_2) \leq \dim S_1 + \dim S_2$, as was shown in problem (4) in DSW2. \square

(b) [+] Find an example of two non-zero matrices where $\text{rank}(A + B) = \text{rank } A + \text{rank } B$.

Solution: Set $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$. Clearly $\text{rank } A = \text{rank } B = 1$ and $\text{rank}(A + B) = 2$ since $A + B = I_2$. \square

(2) Suppose that $A \in \mathbb{R}^{n \times n}$ has the property that $A^2 = A$.

(a) [+] Show that $\text{Col } A = \{\vec{x} \in \mathbb{R}^n : A\vec{x} = \vec{x}\}$.

Solution: (\supseteq) Certainly if $A\vec{x} = \vec{x}$, then $\vec{x} \in \text{Col } A$.

(\subseteq) Let $\vec{b} \in \text{Col } A$, so we can find $\vec{y} \in \mathbb{R}^n$ for which $A\vec{y} = \vec{b}$. Therefore, $A\vec{b} = A^2\vec{y} = A\vec{y} = \vec{b}$, so $A\vec{b} = \vec{b}$ as needed. \square

(b) [+] Show that $\text{Nul } A = \{\vec{x} \in \mathbb{R}^n : \vec{x} = \vec{u} - A\vec{u} \text{ for some } \vec{u} \in \mathbb{R}^n\}$.

Solution: (\subseteq) Suppose that $A\vec{x} = \vec{0}$ and set $\vec{u} = \vec{x}$. We then see that $\vec{x} = \vec{u} - \vec{0} = \vec{u} - A\vec{u}$ as needed.

(\supseteq) If $\vec{x} = \vec{u} - A\vec{u}$ for some $\vec{u} \in \mathbb{R}^n$, then we see that $A\vec{x} = A\vec{u} - A^2\vec{u} = A\vec{u} - A\vec{u} = \vec{0}$. \square

(c) [+] Show that $\text{Col } A \cap \text{Nul } A = \{\vec{0}\}$.

Solution: Here are two solutions, the first being my favorite.

- Suppose that there were some nonzero $\vec{v} \in \text{Col } A \cap \text{Nul } A$. Since $\vec{v} \in \text{Col } A$, there is some $\vec{u} \in \mathbb{R}^n$ such that $A\vec{u} = \vec{v}$. Thus, $A^2\vec{u} = A\vec{v} = \vec{0}$, so $\vec{u} \in \text{Nul}(A^2)$ but since $\vec{v} \neq \vec{0}$, we know that $\vec{u} \notin \text{Nul } A$; a contradiction since $A = A^2$.
- Certainly $\{\vec{0}\} \subseteq \text{Col } A \cap \text{Nul } A$, so we need only show the reverse containment. Suppose that $\vec{v} \in \text{Col } A \cap \text{Nul } A$; we need to show that $\vec{v} = \vec{0}$.

Since $\vec{v} \in \text{Nul } A$, we know that $A\vec{v} = \vec{0}$. But then by part (a), we know that $\vec{v} = A\vec{v} = \vec{0}$ since $\vec{v} \in \text{Col } A$.

Thus $\vec{v} = \vec{0}$. \square

(d) [+] Show that $\text{Col } A + \text{Nul } A = \mathbb{R}^n$.

Solution: Here are two solutions, the first being my favorite.

- By part (c) and problem (5b) on DSW2, we see that $\dim(\text{Col } A + \text{Nul } A) = \dim \text{Col } A + \dim \text{Nul } A$. Furthermore, by the rank–nulity theorem, this tells us that $\dim(\text{Col } A + \text{Nul } A) = n$. Since certainly $\text{Col } A + \text{Nul } A \leq \mathbb{R}^n$, this means that we must have $\text{Col } A + \text{Nul } A = \mathbb{R}^n$.

- Certainly $\text{Col } A + \text{Nul } A \subseteq \mathbb{R}^n$, so we need only show the reverse containment.

Fix $\vec{u} \in \mathbb{R}^n$; we need to show that we can write $\vec{u} = \vec{c} + \vec{n}$ for some $\vec{c} \in \text{Col } A$ and $\vec{n} \in \text{Nul } A$.

Set $\vec{n} = \vec{u} - A\vec{u}$, which is an element of $\text{Nul } A$ by part (b). Now set $\vec{c} = \vec{u} - \vec{n} = A\vec{u}$, so $\vec{u} = \vec{c} + \vec{n}$. Of course, this means that $\vec{c} \in \text{Col } A$ since there is a solution to $A\vec{x} = \vec{c}$.

□

(3) [+2] Is there a matrix A for which $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \in \text{Nul } A$ and $\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \in \text{Col } A$? Why or why not?

Solution: No, there cannot be such an A . If such an A were to exist, then we know that $A \in \mathbb{R}^{3 \times 3}$, so by the rank-nullity theorem, we would then have $\dim \text{Nul } A + \dim \text{Col } A = 3$. However, the conditions on A imply that $\dim \text{Nul } A \geq 2$ and $\dim \text{Col } A \geq 2$; an impossibility. □

(4) **Bonus[+1]** Let $A, B \in \mathbb{R}^{m \times n}$. Show that if there is some non-zero $\vec{v} \in \mathbb{R}^m$ for which both $A\vec{x} = \vec{v}$ and $B\vec{x} = \vec{v}$ have a solution, then $\text{rank}(A + B) < \text{rank } A + \text{rank } B$.

Solution: By the proof of problem (1), we know that $\text{Col}(A + B) \subseteq \text{Col } A + \text{Col } B$. Problem (5d) on DSW2 implies that $\dim(\text{Col } A + \text{Col } B) = \dim \text{Col } A + \dim \text{Col } B - \dim(\text{Col } A \cap \text{Col } B)$, which proves the claim since $\text{Col } A \cap \text{Col } B$ is a non-trivial subspace by assumption since there is some non-zero $\vec{v} \in \text{Col } A \cap \text{Col } B$. □

(5) Study for the midterm!