
Matrices and Linear Trans. Assignment #6 Due July 19

Show your work and justify all answers.

(11 pts)

(1) This exercise will walk through a proof that not every norm is associated with an inner product.

(a) [+1] Let V be an inner product space over C with inner product 〈·, ·〉 and let ‖ · ‖ be the associated

norm. Prove that for any x, y ∈ V , we have

‖x+ y‖2 + ‖x− y‖2 = 2
(
‖x‖2 + ‖y‖2

)
.

(This is known as the parallelogram rule)

Solution: We compute

‖x+ y‖2 + ‖x− y‖2 = 〈x+ y, x+ y〉+ 〈x− y, x− y〉

=
(
〈x, x〉+ 〈x, y〉+ 〈y, x〉+ 〈y, y〉

)
+
(
〈x, x〉 − 〈x, y〉 − 〈y, x〉+ 〈y, y〉

)
= 2〈x, x〉+ 2〈y, y〉 = 2

(
‖x‖2 + ‖y‖2

)
.

�

(b) [+1] For a vector ~x ∈ Cn, the `1-norm of ~x is defined as ‖~x‖1 =
∑n

k=1 |xk|. Prove that ‖ · ‖1 is

indeed a norm on Cn.

Solution: We verify the three properties.

1. For ~x ∈ Cn, we observe that |xk| ∈ R+, so ‖~x‖1 ∈ R+ as well. Furthermore, if ‖~x‖1 = 0, then

we must have |xk| = 0 for all k ∈ [n], so ~x = ~0.

2. Let ~x ∈ Cn and α ∈ C. We have ‖α~x‖1 =
∑n

k=1 |αxk| = |α|
∑n

k=1 |xk| = |α|‖~x‖1.

3. We know that for c, d ∈ C we have |c+ d| ≤ |c|+ |d|, so for ~x, ~y ∈ Cn, we have

‖x+ y‖1 =

n∑
k=1

|xk + yk| ≤
n∑

k=1

|xk|+
n∑

k=1

|yk| = ‖x‖1 + ‖y‖1.

�

(c) [+2] Show that for n ≥ 2, there is no inner product on Cn associated with the `1-norm.

Solution: We show that ‖ · ‖1 does not satisfy the parallelogram rule. We notice that ‖~e1‖1 =

‖~e2‖1 = 1 and ‖~e1 + ~e2‖1 = ‖~e1 − ~e2‖1 = 2.

Thus, ‖~e1 + ~e2‖21 + ‖~e1 − ~e2‖21 = 8 while 2
(
‖~e1‖21 + ‖~e2‖21

)
= 4. �

(2) [+2] Let Pn denote the space of polynomials of degree at most n with real coefficients as a vector space

over R. Equip Pn with the inner product 〈p, q〉 =
∫ 1

−1 p(x)q(x)dx. (While you do not have to prove it,

convince yourself that 〈·, ·〉 is indeed an inner product on Pn)

Use the Gram–Schmidt algorithm to find an orthonormal basis for P2 by starting with the basis

{1, x, x2}.

Solution: Note that ‖1‖2 =
∫ 1

−1 12dx = 2, so we can start with v1 = 1
‖1‖ · 1 = 1√

2
.

Now, set

v′2 = x− 〈x, v1〉v1 = x− 1√
2

∫ 1

−1

1√
2
· xdx = x.

1



2

Since ‖v′2‖2 =
∫ 1

−1 x
2dx = 2

3 , we can thus set

v2 =
1

‖v′2‖
v′2 =

√
3

2
x.

Finally, set

v′3 = x2 − 〈x2, v1〉v1 − 〈x2, v2〉v2 = x2 − 1√
2

∫ 1

−1

1√
2
· x2dx−

√
3

2
x

∫ 1

−1

√
3

2
x · x2dx = x2 − 1

3
.

Since

‖v′3‖2 =

∫ 1

−1

(
x2 − 1

3

)2

dx =
8

45
,

we finally find

v3 =
1

‖v′3‖
v′3 =

√
45

8

(
x2 − 1

3

)
.

Therefore, an orthogonal basis for P2 is{
1√
2
,

√
3

2
x,

3
√

5

2
√

2
x2 −

√
5

2
√

2

}
.

�

(3) Let 〈·, ·〉 denote the standard Hermitian inner product on Cn.

(a) (Not graded. This is just a good fact to keep in mind.1) Fix A,B ∈ Cm×n. Show that A = B if

and only if A~x = B~x for every ~x ∈ Cn.

Solution: Certainly if A = B, then A~x = B~x for every ~x ∈ Cn, so we focus only on the opposite

direction. For this direction, notice that for i ∈ [n], we have that A~ei is the ith column of A. Thus,

since A~ei = B~ei for every i ∈ [n], we know that the ith column of A is the same as the ith column

of B, i.e. A = B. �

(b) [+2] Fix A,B ∈ Cn×n. Show that A = B if and only if 〈~x,A~y〉 = 〈~x,B~y〉 for all ~x, ~y ∈ Cn.

Solution: Obviously if A = B, then 〈~x,A~y〉 = 〈~x,B~y〉 for all ~x, ~y ∈ Cn, so we focus only on the

other direction.

There are a number of ways to do this2, but we will take the hint from part (a) in that we will show

that A~x = B~x for every ~x ∈ Cn. Fix ~x ∈ Cn and compute

〈A~x−B~x,A~x−B~x〉 = 〈A~x−B~x,A~x〉 − 〈A~x−B~x,B~x〉 = 0,

since 〈~y,A~x〉 = 〈~y,B~x〉 for any ~x, ~y ∈ Cn. Therefore, A~x−B~x = ~0, so A~x = B~x. Since ~x ∈ Cn was

arbitrary, this implies that A = B by part (a). �

(c) [+1] Show that if A ∈ Cn×n, then for any ~x, ~y ∈ Cn, we have 〈A~x, ~y〉 = 〈~x,A∗~y〉.

Solution: We compute 〈A~x, ~y〉 = (A~x)∗~y = ~x∗A∗~y = 〈~x,A∗~y〉. �

(d) [+1] A matrix A ∈ Cn×n is called Hermitian if A∗ = A. Show that A ∈ Cn×n is Hermitian if and

only if 〈A~x, ~y〉 = 〈~x,A~y〉 for all ~x, ~y ∈ Cn.

Solution: By part (c), we know that 〈A~x, ~y〉 = 〈~x,A∗~y〉 for any ~x, ~y ∈ Cn. Thus, by part (b), we

see that 〈A~x, ~y〉 = 〈~x,A~y〉 for all ~x, ~y ∈ Cn if and only if A = A∗. �

1wink wink nudge nudge
2Some of these other ways are arguably simpler than this one, but I, personally, find this proof to be the most enlightening,

especially since it works for any inner product on Cn.
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(e) [+1] A matrix A ∈ Cn×n is called unitary if A−1 = A∗; i.e., A∗A = In. Show that A ∈ Cn×n is

unitary if and only if 〈A~x,A~y〉 = 〈~x, ~y〉 for all ~x, ~y ∈ Cn.

Solution: Again by part (c), we know that 〈A~x,A~y〉 = 〈~x,A∗A~y〉 for all ~x, ~y ∈ Cn. Thus, by part

(b), we see that 〈A~x,A~y〉 = 〈~x, ~y〉 = 〈~x, In~y〉 for every ~x, ~y ∈ Cn if and only if A∗A = In. �

(4) Bonus[+1] We will show in class that there are infinite-dimensional inner product spaces V which have

subspaces S ≤ V with S⊥⊥ 6= S. Despite this, prove that if V is any inner product space and S ≤ V ,

then S⊥⊥⊥ = S⊥.

Solution: (⊇) For simplicity, set T = S⊥. We want to show that T⊥⊥ ⊇ T , which we proved for a

general T in class.

(⊆) Fix x ∈ S⊥⊥⊥; we need to show that for any s ∈ S, we have 〈x, s〉 = 0, so that x ∈ S⊥. By

definition of S⊥⊥⊥, we know that for any t ∈ S⊥⊥ we have 〈x, t〉 = 0. However, S ⊆ S⊥⊥, so we know

that for any s ∈ S, we must have 〈x, s〉 = 0 as needed. �


