
Matrices and Linear Trans. Assignment #7 Due July 23

Show your work and justify all answers.

(10 pts)

(1) [+2] Let V be an inner product space over C. For subspaces S1, S2 ≤ V , we write S1 ⊥ S2 if 〈s1, s2〉 = 0

for all s1 ∈ S1 and s2 ∈ S2.

Suppose that S1, . . . , Sn ≤ V are finite-dimensional subspaces such that Si ⊥ Sj for all i 6= j ∈ [n].

Prove that dim
(
S1 + · · ·+ Sn

)
= dimS1 + · · ·+ dimSn.

Solution: By Gram–Schmidt, we can find an orthonormal basis Bi for Si. We claim that B1 ∪ · · · ∪ Bn
(where repetition is allowed1) is a basis for S1 + · · ·+ Sn which will prove the claim.

By the proof of problem (4) in DSW2, we know that B1 ∪ · · · ∪ Bn spans S1 + · · · + Sn, so we need

only argue linear independence. In fact, we will argue that B1 ∪ · · · ∪ Bn is orthonormal, which is even

better!

By assumption, we already know that if b ∈ B1∪· · ·∪Bn, then ‖b‖ = 1. Now, let a 6= b ∈ B1∪· · ·∪Bn.

If a, b ∈ Bi for some i, then we already know that 〈a, b〉 = 0 since Bi is orthonormal by assumption.

On the other hand, if a ∈ Bi and b ∈ Bj for some i 6= j, then 〈a, b〉 = 0 since Si ⊥ Sj for all i 6= j by

assumption. �

(2) Let V be an inner product space over C and let S, T ≤ V .

(a) [+2] Prove that (S + T )⊥ = S⊥ ∩ T⊥.

Solution: (⊇) Let x ∈ S⊥ ∩ T⊥ so we know that for any s ∈ S, t ∈ T , we have 〈x, s〉 = 〈x, t〉 = 0.

Thus, for any s + t ∈ S + T , we know that 〈x, s + t〉 = 〈x, s〉+ 〈x, t〉 = 0, so x ∈ (S + T )⊥.

(⊆) Let x ∈ (S + T )⊥, so for any y ∈ S + T , we know that 〈x, y〉 = 0. Now, fix any s ∈ S. Since

0 ∈ T , we know that s ∈ S + T , so 〈x, s〉 = 0, i.e. x ∈ S⊥. Similarly, x ∈ T⊥, so x ∈ S⊥ ∩ T⊥. �

(b) [+2] Prove that if V is finite-dimensional, then (S ∩ T )⊥ = S⊥ + T⊥.

Solution: Set S1 = S⊥ and T1 = T⊥. Since V is finite-dimensional we know that S⊥1 = S and

T⊥1 = T .

By part (a), we know that (S1 + T1)⊥ = S⊥1 ∩ T⊥1 so by taking the orthogonal complement of both

sides and using the fact that (S1 + T1)⊥⊥ = S1 + T1, we find that

S⊥ + T⊥ = S1 + T1 = (S⊥1 ∩ T⊥1 )⊥ = (S ∩ T )⊥.

�

(3) This exercise will walk through a classification of all inner products on Cn.

A matrix A ∈ Cn×n is called positive-definite if A is Hermitian2 and ~x∗A~x ≥ 0 for all ~x ∈ Cn with

~x∗A~x = 0 if and only if ~x = ~0. We write A � 0 to mean that A is positive-definite.

Finally, for a matrix A ∈ Cn×n, define 〈~x, ~y〉A = ~x∗A~y.

(a) [+2] Show that if A � 0, then 〈~x, ~y〉A is an inner product on Cn. (Note that if c ∈ C, then c = c∗.)

Solution: We verify the three criteria to be an inner product.

1Though, the proof will show this does not happen
2Recall that this means A∗ = A.
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1. We have 〈~x, ~y〉A = ~x∗A~y = (~x∗A~y)∗ = ~y∗A∗~x = ~y∗A~x = 〈~y, ~x〉A since A∗ = A and ~x∗A~y ∈ C.

2. For ~y, ~z ∈ Cn and c, d ∈ C, we have 〈~x, c~y + d~z〉A = ~x∗A(c~y + d~z) = c~x∗A~y + d~x∗A~z =

c〈~x, ~y〉A + d〈~x, ~z〉A.

3. This is the whole point of the definition of positive-definite! 〈~x, ~x〉A = ~x∗A~x ≥ 0 with equality

if and only if ~x = ~0 since A � 0.

�

(b) [+2] Let 〈·, ·〉 be any inner product on Cn. Define the matrix A ∈ Cn×n by Aij = 〈~ei, ~ej〉. Prove

that 〈~x, ~y〉 = 〈~x, ~y〉A for all ~x, ~y ∈ Cn and that A � 0.

Solution: Note right away that Aij = 〈~ei, ~ej〉 = 〈~ej , ~ei〉 = Aji, so A∗ = A.

We now claim that for any ~x, ~y ∈ Cn, we have 〈~x, ~y〉 = ~x∗A~y. Indeed, write ~x = x1~e1 + · · ·+ xn~en

and ~y = y1~e1 + · · ·+ yn~en. Then, by linearity and conjugate-linearity of 〈·, ·〉, we have

〈~x, ~y〉 =

〈 n∑
i=1

xi~ei,

n∑
j=1

yj~ej

〉
=
∑
i,j

xiyj〈~ei, ~ej〉 =
∑
i,j

Aijxiyj = ~x∗A~y.

Therefore, 〈~x, ~y〉 = 〈~x, ~y〉A for all ~x, ~y ∈ Cn.

The fact that A � 0 follows immediately from the fact that ~x∗A~x = 〈x, x〉 ≥ 0 with equality if and

only if ~x = ~0 since 〈·, ·〉 was assumed to be an inner product. �


