

Show your work and justify all answers.

(12 pts)

(1) Let U, V, W be vector spaces (over \mathbb{C}) and let $L: U \rightarrow V$ and $R: V \rightarrow W$ be linear transformations.

- [+1] Prove that $\ker(R \circ L) \supseteq \ker L$ and that $\text{im}(R \circ L) \subseteq \text{im } R$.
- [+2] Prove that $\ker(R \circ L) = \ker L$ if and only if $\text{im } L \cap \ker R = \{0\}$.
- [+2] Prove that $\text{im}(R \circ L) = \text{im } R$ if and only if $\ker R + \text{im } L = V$.
(Hint: it may be helpful to recall that $R(a) = R(b)$ if and only if $a - b \in \ker R$)

(2) [+3] Let U, V be finite-dimensional vector spaces (over \mathbb{C}) and let $L: U \rightarrow V$ be a linear transformation. Consider the following three statements:

- L is injective.
- L is surjective.
- $\dim U = \dim V$.

Prove that any two of the above statements imply the third; e.g. show that if L is injective and $\dim U = \dim V$, then L is surjective, etc.

(1 point for each implication.)

(3) Let V be a finite-dimensional inner product space (over \mathbb{C}) and let $S \leq V$.

- [+2] Prove that if $L: V \rightarrow V$ is a linear transformation with $L(s) = s$ for all $s \in S$ and $L(t) = 0$ for all $t \in S^\perp$, then $L = \text{proj}_S$.¹
(Hint: linear extension lemma)
- [+2] Consider \mathbb{C}^n equipped with the standard Hermitian inner product and let $\{\vec{s}_1, \dots, \vec{s}_k\}$ be *any* basis for $S \leq \mathbb{C}^n$. In DSW3, we showed that if $A = [\vec{s}_1 \ \dots \ \vec{s}_k]$, then $\text{proj}_S = A(A^*A)^{-1}A^*$. Give an alternative proof of this fact by using part (a).

¹Recall that $\text{proj}_S v = p$ if $p \in S$ and $v - p \in S^\perp$.