
Matrices and Linear Trans. Assignment #8 Due July 26

Show your work and justify all answers.

(12 pts)

(1) Let U, V,W be vector spaces (over C) and let L : U → V and R : V →W be linear transformations.

(a) [+1] Prove that ker(R ◦ L) ⊇ kerL and that im(R ◦ L) ⊆ imR.

Solution: If u ∈ kerL, then L(u) = 0, so (R ◦ L)(u) = R(0) = 0, so u ∈ ker(R ◦ L).

If w ∈ im(R ◦ L), then there is some u ∈ U with w = (R ◦ L)(u) = R(L(u)). Since L(u) ∈ V , there

is some v ∈ V (namely v = L(u)) with R(v) = u; thus u ∈ imR. �

(b) [+2] Prove that ker(R ◦ L) = kerL if and only if imL ∩ kerR = {0}.

Solution: (⇒) Suppose that v ∈ imL∩ kerR; we need to show that v = 0. Since v ∈ imL, we can

find some u ∈ U with L(u) = v. Furthermore, since v ∈ kerR, we know that 0 = R(v) = R(L(u)) =

(R ◦ L)(u), so u ∈ ker(R ◦ L). But since ker(R ◦ L) = kerL by assumption, we see that u ∈ kerL,

so v = L(u) = 0.

(⇐) By part (a), we know that kerL ⊆ ker(R ◦L), so we need only show the reverse inclusion. Let

u ∈ ker(R ◦L), so (R ◦L)(u) = 0; we need to show that u ∈ kerL. Since 0 = (R ◦L)(u) = R(L(u)),

we see that L(u) ∈ kerR. On the other hand, certainly L(u) ∈ imL, so L(u) ∈ imL ∩ kerR = {0},
so L(u) = 0. Thus, u ∈ kerL as needed. �

(c) [+2] Prove that im(R ◦ L) = imR if and only if kerR + imL = V .

(Hint: it may be helpful to recall that R(a) = R(b) if and only if a− b ∈ kerR)

Solution: (⇒) Fix v ∈ V ; we need to find a ∈ kerR and b ∈ imL such that a+b = v. Set w = R(v),

so w ∈ imR. Since imR = im(R ◦ L), we can find u ∈ U with (R ◦ L)(u) = w. Set b = L(u), so

b ∈ imL. Finally, set a = v− b, so R(a) = R(v− b) = R(v)−R(b) = R(v)−R(L(u)) = w−w = 0.

Thus a ∈ kerR, b ∈ imL and a + b = v.

(⇐) By part (a), we know that im(R ◦ L) ⊆ imR, so we need only show the reverse inclusion. Let

w ∈ imR; we need to find u ∈ U for which (R ◦ L)(u) = w. Since w ∈ imR, we can find v ∈ V

with R(v) = w. Now, by assumption, kerR+ imL = V , so we can find a ∈ kerR and b ∈ imL with

a + b = v. Since b ∈ imL, we can then find u ∈ U with L(u) = b. Now, since a ∈ kerR, we find

that (R ◦ L)(u) = R(b) = 0 + R(b) = R(a) + R(b) = R(a + b) = R(v) = w, so w ∈ im(R ◦ L). �

(2) [+3] Let U, V be finite-dimensional vector spaces (over C) and let L : U → V be a linear transformation.

Consider the following three statements:

1. L is injective.

2. L is surjective.

3. dimU = dimV .

Prove that any two of the above statements imply the third; e.g. show that if L is injective and dimU =

dimV , then L is surjective, etc.

(1 point for each implication.)

Solution: (1 + 2 =⇒ 3) Since L is both injective and surjective, we know that L is bijective, so U and

V are isomorphic. We’ve seen in class that this implies that dimU = dimV .
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(1 + 3 =⇒ 2) Consider the rank–nullity theorem: dim kerL+ dim imL = dimU . Since L is injective,

we know that dim kerL = 0, so dim imL = dimU = dimV . Since imL ≤ V and V is finite-dimensional,

this means that imL = V , so L is surjective.

(2 + 3 =⇒ 1) Again consider the rank–nullity theorem. Since L is surjective, we know that

imL = V =⇒ dim imL = dimV = dimU , so dim kerL + dim imL = dimU =⇒ dim kerL = 0. Thus,

kerL = {0}, and we’ve seen in class that this implies that L is injective. �

(3) Let V be a finite-dimensional inner product space (over C) and let S ≤ V .

(a) [+2] Prove that if L : V → V is a linear transformation with L(s) = s for all s ∈ S and L(t) = 0

for all t ∈ S⊥, then L = projS .1

(Hint: linear extension lemma)

Solution: Since L and projS are both linear transformations, in order to show that L = projS ,

through the linear extension lemma, it suffices to show that there is a basis B for V such that

L(b) = projS b for all b ∈ B.

Suppose that dimV = n and dimS = k, so by Gram–Schmidt, we can find {v1, . . . , vk}, an

orthonormal basis for S, and {vk+1, . . . , vn}, an orthonormal basis for S⊥; hence {v1, . . . , vn} is an

orthonormal basis for V .

Now, for all i ∈ [k], we know that vi ∈ S and vi−vi = 0 ∈ S⊥, so projS vi = vi = L(vi). On the other

hand, for all i ∈ {k + 1, . . . , n}, we know that 0 ∈ S and vi − 0 = vi ∈ S⊥, so projS vi = 0 = L(vi).

Thus, projS and L agree on a basis for V , so projS = L. �

(b) [+2] Consider Cn equipped with the standard Hermitian inner product and let {~s1, . . . , ~sk} be any

basis for S ≤ Cn. In DSW3, we showed that if A =
[
~s1 · · · ~sk

]
, then projS = A(A∗A)−1A∗.

Give an alternative proof of this fact by using part (a).

Solution: Since A(A∗A)−1A∗ ∈ Cn×n, we indeed know that A(A∗A)−1A∗ : Cn → Cn is a linear

transformation. We need to show that if ~s ∈ S, then A(A∗A)−1A∗~s = ~s and if ~t ∈ S⊥, then

A(A∗A)−1A∗~t = ~0.

First, let ~s ∈ S, so there is some ~x ∈ Ck for which A~x = ~s. Thus,

A(A∗A)−1A∗~s = A(A∗A)−1A∗A~x = AIk~x = A~x = ~s,

as needed. Now, let ~t ∈ S⊥, so 〈~s,~t〉 = 0 for all ~s ∈ S. Notice that A∗~t =


〈~s1,~t〉

...

〈~sk,~t〉

, so

A(A∗A)−1A∗~t = A(A∗A)−1~0 = ~0, as needed.

Thus, projS = A(A∗A)−1A∗ by part (a). �

1Recall that projS v = p if p ∈ S and v − p ∈ S⊥.


